热门推荐
谷歌推出其最先进AI模型Gemini,希望击败GPT
2024-12-24 05:48

·谷歌宣布推出其规模最大、功能最强大的新大型语言模型Gemin,其最强大的TPU“Cloud TPU v5p”以及来自谷歌云的人工智能超级计算机。

·“谷歌运行了32个完善的基准测试来比较Gemini和GPT-4,从广泛的整体测试(如多任务语言理解基准测试)到比较两个模型生成Python代码的能力。”谷歌DeepMind首席执行官德米斯·哈萨比斯表示,“我认为我们在32项基准中的30项中大幅领先。”

美国东部时间12月6日,谷歌公司宣布推出其规模最大、功能最强大的新大型语言模型Gemini,其最强大的TPU(张量处理单元)“Cloud TPU v5p”以及来自谷歌云的人工智能超级计算机。v5p是今年早些时候全面推出的Cloud TPU v5e的更新版本,谷歌承诺这些芯片的速度明显快于v4 TPU。

一年前,在人工智能开发机构OpenAI发布聊天机器人ChatGPT后,创造了当前人工智能热潮背后大部分基础技术的谷歌措手不及,一度发布了内部“红色警报”(red code)。一年零一周后,谷歌似乎准备好了反击。

谷歌DeepMind首席执行官、Gemini团队代表德米斯·哈萨比斯(Demis Hassabis)在发布会上正面谈及GPT-4与Gemini的对比,“我们对系统进行了非常彻底的分析,并进行了基准测试。谷歌运行了32个完善的基准测试来比较这两个模型,从广泛的整体测试(如多任务语言理解基准测试)到比较两个模型生成Python代码的能力。”哈萨比斯略带微笑地表示,“我认为我们在32项基准中的30项中大幅领先。”

从发布日起,Gemini开始应用于Bard和Pixel 8 Pro智能手机,并将很快与谷歌服务中的其他产品集成,包括Chrome、搜索和广告等。

“Gemini Pro性能优于GPT-3.5”

大型语言模型Gemini包括一套三种不同规模的模型:Gemini Ultra是最大、功能最强大的类别,被定位为GPT-4的竞争对手;Gemini Pro是一款中端型号,能够击败GPT-3.5,可扩展多种任务;Gemini Nano用于特定任务和移动设备。

Gemini包括一套三种不同规模的模型。

目前,谷歌计划通过谷歌云将Gemini授权给客户,供他们在自己的应用程序中使用。12月13日开始,开发者和企业客户可以通过谷歌AI Studio或谷歌Cloud Vertex AI中的Gemini API(应用程序编程接口)访问Gemini Pro,安卓人员可以使用Gemini Nano完成构建。从发布会当天开始,谷歌聊天机器人Bard将使用 Gemini Pro来实现高级推理、规划、理解和其他功能。明年初,谷歌将推出“​Bard Advanced,其将使用Gemini Ultra,这代表了Bard发布以来的最大更新。

据介绍,Gemini Ultra是第一个在MMLU(大规模多任务语言理解)方面超越人类专家的模型,该模型综合使用数学、物理、历史、法律、医学和伦理学等57个科目来测试世界知识和解决问题的能力,谷歌在一篇博客文章中表示,它可以理解复杂主题中的细微差别和推理。

据哈萨比斯介绍,在对比Gemini和GPT-4的基准测试中,Gemini最明显的优势来自于它理解视频和音频并与之交互的能力。这很大程度上是设计使然:多模态在最开始就是Gemini计划的一部分。谷歌没有像OpenAI构建DALL·E(文生图模型)和Whisper(语音识别模型)那样单独训练图像和语音模型,而是从一开始就建立为一个多感官模型。

而据CNBC报道,谷歌高管们在新闻发布会上表示Gemini Pro的表现优于GPT-3.5,但回避了与GPT-4相比如何的问题。对于谷歌是否计划对Bard Advanced的访问收费,谷歌Bard总经理萧茜茜(Sissie Hsiao)表示,谷歌专注于创造良好的体验,目前还没有任何相关盈利的细节。

“我们一直对非常通用的系统感兴趣。”哈萨比斯说,他对如何混合所有这些模态特别感兴趣,“从任意数量的输入和感知中收集尽可能多的数据,然后给出尽可能多的响应。”

Gemini最基本的模型是文本输入和文本输出,但更强大的模型(如Gemini Ultra)可以处理图像、视频和音频。哈萨比斯说,它甚至会变得更加通用,有像动作和触摸之类更像机器人类型的东西。他认为,随着时间的推移,Gemini将获得更多的感知,变得更有意识,并在这个过程中变得更加准确和稳定。“这些模型只是更好地了解周围的世界。当然,这些模型仍然存在幻觉,并且仍然存在偏见和其他问题。”但哈萨比斯表示,它们知道的越多,就会做得越好。

谷歌似乎特别将编码视为Gemini的杀手级应用程序,它使用了一种名为AlphaCode 2的新代码生成系统,据称该系统的性能优于85%的编码竞赛参与者,而原始AlphaCode的这一比例为50%。谷歌首席执行官桑达尔·皮查伊(Sundar Pichai)表示,用户会注意到模型涉及的几乎所有方面都有所改进。

“不愿为了跟上步伐而走得太快”

值得注意的是,在今年5月,包括哈萨比斯在内的500多名著名学者和行业领袖签署的一份声明称,“与流行病和核战争等其他社会规模风险一样,减轻人工智能带来的灭绝风险应该成为全球优先事项。”

在这次发布会中,哈萨比斯和皮查伊对于谷歌似乎步调缓慢的说法回应道,他们不愿意为了跟上步伐而走得太快,“尤其是当我们越来越接近人工智能的终极梦想‘通用人工智能’时”。“当我们接近通用人工智能时,事情将会有所不同。”哈萨比斯说,“这是某种具有主动性的技术,所以我认为我们必须谨慎对待,谨慎但乐观。”

谷歌表示,通过内部和外部测试以及警示团队(red-teaming),它一直在努力确保Gemini的安全和责任。皮查伊指出,确保数据的安全性和可靠性对于企业优先的产品尤为重要,这也是大多数生成式人工智能利润的来源。与此同时,哈萨比斯也承认,推出最先进的人工智能系统的风险之一就是,它会出现没人能预测到的问题和攻击向量(attack vector)。

“这就是为什么你必须释放一些东西,去观察和学习。”哈萨比斯说。谷歌发布Gemini Ultra的速度特别慢,哈萨比斯把它比作一个可控的测试版,这为谷歌最强大、最不受约束的模型提供了一个“更安全的试验区”。“基本上,如果Gemini有一个破坏婚姻的另类人格,谷歌会在你之前找到它。”这番话影射了此前微软必应聊天机器人向《纽约时报》专栏作家凯文·卢斯(Kevin Roose)求婚,并试图拆散他的婚姻。

谷歌最强TPU与AI超级计算机

与新模型一起亮相的,还有新版本的TPU芯片TPU v5p,旨在减少训练大语言模型相关的时间投入。TPU是谷歌为神经网络设计的专用芯片,经过优化可加快机器学习模型的训练和推断速度,谷歌于2016年起开始推出第一代TPU。

谷歌TPU芯片参数比较。

据谷歌介绍,与TPU v4相比,TPU v5p的浮点运算性能提升了两倍,在高带宽内存方面提高了3倍。使用谷歌的600 GB/s芯片间互连,可以将8960个v5p加速器耦合在一个Pod(通常指一个包含多个芯片的集群或模块)中,从而更快或更高精度地训练模型。作为参考,该值比TPU v5e大35倍,是TPU v4的两倍多。

谷歌称,TPU v5p是其迄今为止最强大的,能够提供459 teraFLOPS(每秒可执行459万亿次浮点运算)的bfloat16(16位浮点数格式)性能或918 teraOPS(每秒可执行918万亿次整数运算)的Int8(执行8位整数)性能,支持95GB的高带宽内存,能够以2.76 TB/s的速度传输数据。

谷歌表示,所有这些意味着TPU v5p可以比TPU v4更快地训练大型语言模型,如训练GPT-3(1750亿参数)这样的大语言模型速度比TPU v4快2.8倍。

不过,这种更高的性能和可扩展性也是有代价的。每个TPU v5p加速器的运行费用为每小时4.2美元,而TPU v4加速器为每小时3.22美元,TPU v5e加速器每小时1.2美元。

谷歌TPU芯片训练大模型的参数比较。

“在我们的早期使用阶段,谷歌DeepMind和谷歌Research观察到,与我们的TPU v4芯片相比,使用TPU v5p芯片的大语言模型(LLM)训练工作负载的速度提高了2倍。”谷歌DeepMind首席科学家杰夫·迪恩(Jeff Dean)写道,“对机器学习框架(JAX、PyTorch、TensorFlow)和编排工具的强大支持使我们能够在v5p上更高效地扩展。通过第二代SparseCores,我们还看到嵌入密集型工作负载的性能有了显着提高。TPU对于我们在Gemini等尖端模型上进行最大规模的研究和工程工作至关重要。”

    以上就是本篇文章【谷歌推出其最先进AI模型Gemini,希望击败GPT】的全部内容了,欢迎阅览 ! 文章地址:http://fabua.ksxb.net/quote/4574.html 
     动态      相关文章      文章      同类文章      热门文章      栏目首页      网站地图      返回首页 海之东岸资讯移动站 http://fabua.ksxb.net/mobile/ , 查看更多