快速排序是一种排序算法,对包含n个数的输入数组,最坏的情况运行时间为Θ(n2)[Θ 读作theta]。虽然这个最坏情况的运行时间比较差,但快速排序通常是用于排序的最佳的实用选择。这是因为其平均情况下的性能相当好:期望的运行时间为 Θ(nlgn),且Θ(nlgn)记号中隐含的常数因子很小。另外,它还能够进行就地排序,在虚拟内存环境中也能很好的工作。
和归并排序一样,快速排序也是基于分治法(Divide and conquer):
伪代码:
1、最坏情况
快速排序的最坏情况发生在当数组已经有序或者逆序排好的情况下。这样的话划分过程产生的两个区域中有一个没有元素,另一个包含n-1个元素。此时算法的运行时间可以递归地表示为:,递归式的解为。可以看出,快速排序算法最坏情况运行时间并不比插入排序的更好。
2、最好情况
如果我们足够幸运,在每次划分操作中做到最平衡的划分,即将数组划分为n/2:n/2。此时得到的递归式为,根据主定理的情况二可得。
3、平均情况
假设一:快排中的划分点非常偏斜,比如每次都将数组划分为1/10 : 9/10的两个子区域,这种情况下运行时间是多少呢?运行时间递归式为,使用递归树解得。可以看出,当划分点非常偏斜的时候,运行时间仍然是Θ(nlgn)。
假设二:Partition所产生的划分既有“好的”,也有“差的”,它们交替出现。这种平均情况下运行时间又是多少呢?这时的递归式为(G表示Good,B表示Bad):
G(n) = 2B(n/2) + Θ(n)
B(n) = G(n-1) + Θ(n)
解:G(n) = 2(G(n/2-1) + Θ(n/2)) + Θ(n) = 2G(n/2-1) + Θ(n) = Θ(nlgn)
可以看出,当好、差划分交替出现时,快排的运行时间就如全是好的划分一样,仍然是Θ(nlgn) 。
经过上面的分析可以知道,在输入有序或逆序时快速排序很慢,在其余情况则表现良好。如果输入本身已被排序,那么就糟了。那么我们如何确保对于所有输 入,它均能够获得较好的平均情况性能呢?前面的快速排序我们默认使用数组中第一个元素作为主元。假设随机选择数组中的元素作为主元,则快排的运行时间将不 依赖于输入序列的顺序。我们把随机选择主元的快速排序叫做Randomized Quicksort。
在随机化的快速排序中,我们不是始终选择第一个元素作为主元,而是从数组A[p…r]中随机选择一个元素,然后将其与第一个元素交换。由于主元元素是随机选择的,我们期望在平均情况下,对输入数组的划分能够比较对称。
伪代码:
我们对3万个元素的有序序列分别进行传统的快速排序 和 随机化的快速排序,并比较它们的运行时间:
运行结果:
从运行结果可以看出,对于有序的输入,随机化版本的快速排序的效率会高很多。我们知道交换两个变量的值有以下三种方法:
但是你会发现在本程序中,如果swap函数使用后面两种方法会出错。由于方法二和方法三没有使用中间变量,它们交换值的原理是直接对变量的内存单元进行操作。如果两个变量对应的同一内存单元,则经过两次加减或异或操作,内存单元的值已经变为了0,因而不能实现变量值交换。所以当需要交换值的变量可能是同一变量时,必须使用第三变量实现交换,否则会对变量清零。